365bet最稳定网址-365bet官网注册开户-77365bet体育在线投注

第8周期元素

第8周期元素

第8週期分為五個區塊,其中第一個便是g-區塊。然而自旋-軌道耦合效應大大降低了高原子序元素的軌道近似的準確性。[5]

元素週期表區塊

s區塊

p區塊

d區塊

f區塊

g區塊

(未發現的元素以較淺顏色顯示)

構造原理模型

編輯

該模型在電子排佈永遠根據構造原理的前提下成立,但這並不完全正確。[note 3]相對論性效應可能導致當中某些元素在以下的元素週期表中位置有所變動。[5][6][8][9]

8

119Uue

120Ubn

121Ubu

122Ubb

123Ubt

124Ubq

125Ubp

126Ubh

127Ubs

128Ubo

129Ube

130Utn

131Utu

132Utb

133Utt

134Utq

135Utp

136Uth

137Uts

138Uto

139Ute

140Uqn

141Uqu

142Uqb

143Uqt

144Uqq

145Uqp

146Uqh

147Uqs

148Uqo

149Uqe

150Upn

151Upu

152Upb

153Upt

154Upq

155Upp

156Uph

157Ups

158Upo

159Upe

160Uhn

161Uhu

162Uhb

163Uht

164Uhq

s-區塊

g-區塊

p-區塊

f-區塊

d-區塊

s-區塊元素

編輯

主條目:Uue和Ubn

第8週期s-區塊元素的原子序為119和120。合成Uue和Ubn元素所需條件為,靈敏度要達到飛靶恩量級,在目前連最先進的設施都不能及。

合成嘗試

編輯

Uue的合成曾由位於加州伯克利的superHILAC加速器在1985年嘗試過,以鈣-48離子撞擊鑀-254目標。結果沒有發現原子,有限產量為300 nb。[10]

99

254

E

s

+

20

48

C

a

119

302

U

u

e

n

o

a

t

o

m

s

{\displaystyle \,_{99}^{254}\mathrm {Es} +\,_{20}^{48}\mathrm {Ca} \to \,_{119}^{302}\mathrm {Uue} ^{*}\to \mathrm {no\ atoms} }

這項反應並不會有作用,因為鑀-254極為罕見,製造足夠的份量十分困難,太小的撞擊目標使實驗無法達到所需的敏感度。

在2007年3月至4月,Ubn的合成在杜布納的Flerov核反應實驗室進行嘗試,以鐵-58離子撞擊鈈-244目標。[11]初步分析並沒有發現任何元素120的原子,限制產量為400 fb。[12]

94

244

P

u

+

26

58

F

e

120

302

U

b

n

f

i

s

s

i

o

n

o

n

l

y

{\displaystyle \,_{94}^{244}\mathrm {Pu} +\,_{26}^{58}\mathrm {Fe} \to \,_{120}^{302}\mathrm {Ubn} ^{*}\to \mathrm {fission\ only} }

該俄羅斯團隊正計劃在重新嘗試反應前升級其設施。

在2007年4月,位於重離子研究所的團隊嘗試利用鈾-238和鎳-64創造Ubn:

92

238

U

+

28

64

N

i

120

302

U

b

n

f

i

s

s

i

o

n

o

n

l

y

{\displaystyle \,_{92}^{238}\mathrm {U} +\,_{28}^{64}\mathrm {Ni} \to \,_{120}^{302}\mathrm {Ubn} ^{*}\to \mathrm {fission\ only} }

在1.6 pb的限制下沒有探測到原子。重離子研究所用更高的敏感度重復了實驗,在2007年4月至5月、2008年1月至3月及2008年9月至10月分別進行了三次嘗試。所有嘗試均沒有產生原子,截面限制為90 fb。

g-區塊元素

編輯

主條目:超錒系元素和g-區塊

第8週期是第一個包括g-區塊的週期,該區塊由元素121開始,但5g殼層的填充在何處終結則不清。這些元素屬於超錒系元素,擁有部分填充的5g和6f殼層,因此好像錒系元素一樣有不同的化學特性。然而,5g和6f殼層的接近,加上這兩殼層與7d和8p殼層間的小間隔,可以產生一系列元素,擁有和它們在週期表中的位置不相關的屬性。[1]

這些元素只能在假想的穩定島附近才能被探測到。它們的穩定性取決於穩定島的位置。如果穩定島位於低原子序元素,大部分超錒系元素就會太不穩定,不能被探測到;但如果穩定島位於高原子序元素,則較前的超錒系元素就有被探測到的可能。

合成嘗試及宣稱的發現

編輯

週期表中這個區域中有嘗試合成過的元素只有元素122、124和126。

合成Ubb的首次嘗試於1972年在聯合核研究所進行,所用熱核聚變反應為:

92

238

U

+

30

66

Z

n

122

304

U

b

b

n

o

a

t

o

m

s

.

{\displaystyle \,_{92}^{238}\mathrm {U} +\,_{30}^{66}\mathrm {Zn} \to \,_{122}^{304}\mathrm {Ubb} ^{*}\to \mathrm {no\ atoms} .}

沒有探測到任何原子。目前的結果(見鈇)顯示,該實驗的敏感度低了至少6個量級。

在2000年,重離子研究所用更高的敏感度進行了相似的實驗:

92

238

U

+

30

70

Z

n

122

308

U

b

b

n

o

a

t

o

m

s

.

{\displaystyle \,_{92}^{238}\mathrm {U} +\,_{30}^{70}\mathrm {Zn} \to \,_{122}^{308}\mathrm {Ubb} ^{*}\to \mathrm {no\ atoms} .}

這些結果表明重元素的合成仍然是一件非常大的困難,並需要更高的離子束強度和實驗效率。敏感度要提高到1 fb。

Flerov核反應實驗室在2000年至2004年期間曾進行過多次實驗,研究複核306Ubb的裂變屬性。實驗使用了兩項核反應:248Cm+58Fe及242Pu+64Ni。結果揭示了這種原子核進行裂變是主要通過排出閉合殼層核子,如132Sn (Z=50, N=82)。

於2008年4月24日,以Amnon Marinov為首的位於耶路撒冷希伯來大學的團隊聲稱在天然釷沈積物中發現了單個Ubb原子,存量相對於釷為10−11到10−12之間。[13]Marinov等人的發現被一部分科學界批評,Marinov則稱他已把論文提交到《自然》和《自然物理學》,但都在提交到同行評審前被退回了。[4]

他們此前利用相同的方法金性質譜分析後識別較輕的釷同位素,[14][15]而對此方法的批判在2008年發表在《物理評論C》中。[16]之後Marinov的團隊再於《物理評論C》中發表了一份駁辭。[17]

利用更優越的加速器質譜法再次進行對釷沈積物的分析實驗後,並未能證實先前的結論,儘管敏感度提高了100倍。[18]該結果使Marinov有關半衰期特別長的釷、[14][15]錀[19]及Ubb同位素的研究成果的可信度大大降低。[13]

在一系列的實驗中,國家大型重離子加速器嘗試量度Fl(114)、Ubn(120)及Ubq(124)複核的直接和延遲核裂變,以研究這個區域的殼層效應,並尋找下一個球體質子殼層。在2006年,團隊提供了以下反應的結果,並發佈於2008年:

92

238

U

+

32

n

a

t

G

e

308

,

310

,

311

,

312

,

314

U

b

q

f

i

s

s

i

o

n

.

{\displaystyle \,_{92}^{238}\mathrm {U} +\,_{32}^{nat}\mathrm {Ge} \to \,^{308,310,311,312,314}\mathrm {Ubq} ^{*}\to \mathrm {fission} .}

該團隊表示探測到Ubq複核的裂變,半衰期大於10−18 s。雖然非常的短,但能夠量度到這樣的衰變表示在Z=124處有強的殼層效應。類似的現象也出現在Z=120,但沒出現在Z=114。[20]

Bimbot等人於1971年首次嘗試了合成Ubh,利用以下的熱核聚變反應:

90

232

T

h

+

36

84

K

r

126

316

U

b

h

n

o

a

t

o

m

s

{\displaystyle \,_{90}^{232}\mathrm {Th} +\,_{36}^{84}\mathrm {Kr} \to \,_{126}^{316}\mathrm {Ubh} ^{*}\to \mathrm {no\ atoms} }

反應中探測到高能α粒子,並能作為成功合成Ubh的可能證據。近期的研究指出這不大可能,因為根據目前的理解,1971年所進行的實驗敏感度比所需的低了幾個能級。至今沒有其他實驗嘗試合成Ubh。

該區域中的所有其它元素及更高的元素都沒有經過嘗試合成的實驗。

Feynmanium

編輯

主條目:Feynmanium

元素137(Uts)有時被稱為feynmanium(符號為Fy),因為理查德·費曼曾提出,[21]對相對論性狄拉克方程的簡單理解在Z > 1/α = 137時會發生問題,表示Uts以後的元素不能以中性原子的形式存在,並且以電子排佈排列的元素週期表會在此崩潰。然而,更嚴密的分析表明這個極限位於Z ≈ 173。[note 4]

玻爾模型在原子序超過137時會發生困難,因為1s電子軌道中電子的速度v為:

v

=

Z

α

c

Z

c

137.036

{\displaystyle v=Z\alpha c\approx {\frac {Zc}{137.036}}}

當中Z為原子序,α為精細結構常數(對電磁交互作用強度的測量)。[22]根據這個近似值,所有原子序大於137的元素中1s電子的速度都會超越c,即光速。因此非相對論性的玻爾模型在此應用在超重元素時明顯不正確。

相對論性狄拉克方程也在Z > 137時發生問題,因為基態能為

E

=

m

c

2

1

Z

2

α

2

{\displaystyle E=mc^{2}{\sqrt {1-Z^{2}\alpha ^{2}}}}

當中m為電子的靜止質量。當Z > 137,狄拉克基態的波函數是波動的而非束縛的,且正負能量譜之間沒有空隔,如克萊因悖論所言。[23]

考慮到核子有限大小的效應並且更準確的計算指出,結合能在Z > Zcr ≈ 173處首先超過2mc2。當Z > Zcr,如果最內部的軌道沒有電子,則原子核的電場會從真空當中產生出一顆電子,導致自發放射出一顆正子。[24]

f-區塊元素

編輯

主條目:超錒系元素

這些元素的電子雲的相對論性及量子力學效應預計甚至要比g-區塊元素的更強,因為這些元素有更高的原子序。如果它們能夠被觀察到,則它們有可能擁有相似的化學特性,但5g和6f殼層(可能還有7d和8p殼層)之間距離相近的影響難以估計,這是由於較強的相對論性及量子力學效應。這些軌道之間能量的相近,可能導致電子同時填充這些軌道,產生一些列相似的元素,氧化態難以互相區分。根據電子排佈的元素週期性就可能不再成立了。[1]

這些原子的存在在理論上是可能的,因為有著光速的限制,原子序的上限為Z = 173。[25]之後再指定電子殼層便失去意義,元素也只能以離子形式存在。然而科技可能永遠也不足以合成它們。[2]

d-區塊及p-區塊元素

編輯

雖然根據之前的週期性,元素153會成為最後一個超錒系元素,但是由於電子雲中極強的相對論性及量子力學效應,d-區塊和p-區塊的電子排佈只會是數學推斷的。如果最終它們的化學特性能被研究,那麼很可能無法以任何現有的分類去描述它們。由於5g、6f、7d和8p軌道的接近及其他的相對論性效應,在這區域的元素週期性將會瓦解,因此這些元素的特性和在週期表中的排位在一般情況下的重要性不大。[1]

Pyykkö模型

編輯

此章節需要擴充。 (2012年3月1日)

Pekka Pyykkö預測軌道殼層的填充次序如下:

8s(119-120)

5g(121-138)

8p的首兩個位置(139-140)

6f(141-154)

7d(155-164)

9s(165-166)

9p的首兩個位置(167-168)

8p的其餘位置(169~172)。[6]

他也指出第8週期可分為三部分:

8a,包括8s

8b,包括8p的首兩個元素

8c,包括7d和8p的其餘位置。[6]

元素週期表區塊

s-區塊

p-區塊

d-區塊

f-區塊

g-區塊

(未發現的元素以較淺顏色顯示)

Pyykkö模型。位置變動過的元素以粗體顯示。

8

119Uue

120Ubn

121Ubu

122Ubb

123Ubt

124Ubq

125Ubp

126Ubh

127Ubs

128Ubo

129Ube

130Utn

131Utu

132Utb

133Utt

134Utq

135Utp

136Uth

137Uts

138Uto

141Uqu

142Uqb

143Uqt

144Uqq

145Uqp

146Uqh

147Uqs

148Uqo

149Uqe

150Upn

151Upu

152Upb

153Upt

154Upq

155Upp

156Uph

157Ups

158Upo

159Upe

160Uhn

161Uhu

162Uhb

163Uht

164Uhq

139Ute

140Uqn

169Uhe

170Usn

171Usu

172Usb

9

165Uhp

166Uhh

167Uhs

168Uho

s-區塊

g-區塊

f-區塊

d-區塊

p-區塊

相关推荐